Consultation with
the Specialist

Pediatric Approach to Craniosynostosis
Gregory S. Liptak, MD, MPH* and Joseph M. Serletti, MD†

Occurrence
Asymmetry of the head is a common occurrence in infants and may have a number of etiologies, including positional deformity, simple craniosynostosis, complex craniofacial synostosis, metabolic bone disease, depressed skull fracture, microcephaly due to brain damage, and hydrocephalus. Deformations of the head attributable to prenatal compression usually resolve by the time a child is 2 months of age. However, a number of centers have reported a recent increase in the occurrence of cranial deformations in infants older than 6 months, which is attributed to the current recommendation that children sleep on their backs to avoid sudden infant death syndrome.

Synostosis of a single suture may lead to only cosmetic changes, but synostosis of several sutures may be life-threatening and lead to increased intracranial pressure, loss of vision, and severe deformities that affect social interactions. Primary craniosynostosis, which is defined as synostosis without an underlying abnormality of the brain or metabolic defect, occurs in 1 in 2,000 births. Secondary craniosynostosis, such as would be due to cerebral atrophy, is somewhat less common. Figure 1 shows the occurrence of isolated craniosynostosis in a referral center. (“Isolated” in this context means involvement of the sutures only without an identified genetic or chromosomal abnormality such as Apert syndrome.) Involvement of the sagittal suture is the most common form and occurs more frequently in males than in females. Synostosis of a single suture is more common than synostosis of multiple sutures.

Etiology
Secondary craniosynostosis may be due to a structural cerebral abnormality such as atrophy or hypoplasia and may be related to other conditions such as hyperthyroidism, severe anemia (eg, thalassemia), or a metabolic condition (eg, mucopolysaccharidosis). Primary craniosynostosis has been related to intrauterine constraint, such as occurs with twinning or with uterine abnormalities such as a bicornuate uterus. Exposure to maternal smoking or high altitude during gestation has been associated with an increased occurrence of craniosynostosis. Genetic abnormalities such as Apert syndrome and chromosomal anomalies such as abnormalities of chromosome 13q can cause craniosynostosis. Some occurrences of isolated craniosynostosis are familial (eg, involvement of both coronal sutures), but most cases do not have a clear etiology.

A number of discrete genetic conditions produce craniosynostosis, such as Crouzon syndrome (Fig. 2). One of the most exciting developments in the understanding of craniosynostosis has come through the discovery that at least four genetic syndromes associated with craniosynostosis (Table 1) are related to abnormalities of fibroblast growth factor receptor 2. In fact, all four of the syndromes shown in Table 1, which are autosomal dominant, have abnormalities of the same region of chromosome 10, despite having significant differences in phenotype. Although these entities account for only 5% of children who have craniosynostosis, this knowledge may increase the understanding of other types of craniosynostosis as well as the role of fibroblast growth factors and may lead to interventions to prevent or ameliorate the effects of these genetic anomalies.

Growth of the Skull
Cranial growth occurs as a direct result of the growing brain. If all cranial sutures are open, the brain grows normally without areas of restriction, and skull growth and shape occur normally. Without adequate stimulation from the brain and other intracranial soft tissues, the skull will not grow normally. For example, an infant who has severe cerebral atrophy will develop microcephaly and premature closure of all sutures because of the lack of stimulation of the growing brain upon the surrounding skull.

Once a suture becomes fused, growth perpendicular to that suture becomes restricted, and the fused bones act as a single bony structure. With failure of growth across a single fused suture, compensatory growth occurs at the remaining open sutures to accommodate the growing brain. These compensatory changes allow continued unrestricted brain growth without the development of increased intracranial pressure in most instances. This combination of restricted perpendicular growth and compensatory changes produces the typical deformities seen with each type of single suture synostosis. In scaphocephaly, for instance, there is no growth perpendicular to the sagittal suture, which results in bitemporal narrowing. Compensatory changes cause

*Associate Professor of Pediatrics.
†Associate Professor of Surgery, University of Rochester Medical Center, Rochester, NY.

FIGURE 2. Mother and child who both have Crouzon syndrome.

Cranial elongation in the anterior-posterior direction. In plagiocephaly, the absence of growth across one coronal suture results in retraction of the forehead and upper orbit. Compensatory changes occur with protrusion or overgrowth of the ipsilateral occiput and contralateral frontal bone.

Complex, multiple sutural synostosis frequently extends to premature fusion of the sutures of the base of the skull, leading to midfacial hypoplasia. Midfacial hypoplasia, as seen in children who have Apert syndrome, is characterized by shallow orbits, a foreshortened nasal dorsum, maxillary retrognathia, and occasionally upper airway obstruction.

Evaluation of the Child

A child who presents with an asymmetric head should receive a thorough physical examination to identify deformations or malformations of other organ systems (Fig. 3). The range of motion of the neck should be evaluated because torticollis that is present at birth can, if not treated, lead to persistent asymmetry of the head and face. Torticollis can be managed with physical therapy, which should improve the range of cervical rotation as well as the position and shape of the head in most cases. If this does not occur, surgery to release the sternocleidomastoid muscle may be indicated. Examination of the extremities and back of a child who has an asymmetric head may reveal syndactyly or deformations such as congenital dislocation of the hip, scoliosis, and deformed feet, which are more common among children who have deformations of the head.

The craniofacial region should be evaluated by viewing the child from the front, side (profile), back, below the chin (worm’s eye view), and above the head (bird’s eye view). Abnormalities, such as the orbital asymmetry of a child who has plagiocephaly, can be visualized easily in the bird’s eye view (Fig 4).

A complete history, including family history of craniofacial abnormalities, should be obtained. The symmetry, proportionality, and balance of the facial structures, includ-
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>LOCATION OF ABNORMALITY (CHROMOSOME/GENE)</th>
<th>PRIMARY CHARACTERISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apert syndrome (Acrocephalosyndactyly, type I)</td>
<td>10q25.3-q26/FGFR2 Exon 7(U)</td>
<td>Acrocephaly, brachycephaly, flat face, large fontanelle, shallow orbits, hypertelorism, down-slanting palpebral fissures, maxillary hypoplasia, narrow palate, syndactyly, short fingers, broad thumbs and great toes, fusion of cervical vertebrae, mental retardation (in 30%), acne</td>
</tr>
<tr>
<td>Crouzon syndrome (Craniofacial dysostosis)</td>
<td>10q25.3-q26/FGFR2 Exon 9(B)</td>
<td>Shallow orbits, hypertelorism, frontal bossing, maxillary hypoplasia, curved beak-shaped nose, A-shaped palate, conductive hearing loss</td>
</tr>
<tr>
<td>Jackson-Weiss syndrome (Cephalo-syndactyly)</td>
<td>10q25.3-q26/FGFR2 Exon 9(B)</td>
<td>Shallow orbits, hypertelorism, midfacial hypoplasia, syndactyly, broad great toe</td>
</tr>
<tr>
<td>Pfeiffer syndrome (Acrocephalosyndactyly, type V)</td>
<td>10q25.3-q26/FGFR2 Exon 9(B) and 8p11.2-p12/FGFR1 Exon 5</td>
<td>Brachycephaly, full high forehead, hypertelorism, up-slanting palpebral fissures, small nose, broad thumbs and great toes, syndactyly</td>
</tr>
</tbody>
</table>

FIGURE 3. Flow diagram for evaluation of a child who has an asymmetric head.
readily available and the diagnosis cannot be ascertained by physical examination, plain radiographs of the skull may be helpful. Abnormalities seen on radiography include sclerosis of the suture line, bony bridging and beaking or heaping up of bone along the suture line, or indistinctness of the suture. These abnormalities may involve only a small part of the suture line and require a thorough search. The entire suture line may not be visible on a single film, resulting in a falsely negative interpretation. Infants whose suture lines are primarily cartilaginous may have no apparent abnormalities on radiography, but distinctive abnormalities in the shape of the skull can be identified on the films. CT scanning with three-dimensional reconstruction has become the most useful radiologic examination in identifying the skull shape and the presence or absence of involved sutures (Fig. 6). If there is concern about the anatomy or structure of the cerebrum, magnetic resonance imaging may be helpful. If indicated, chromosome analysis or referral to a geneticist may help to determine the underlying cause of the craniosynostosis.

Differentiating Lambdoidal Synostosis from Positional Deformation in Plagiocephaly

Differentiating positional from structural changes is important for determining the treatment and prognosis for a child who presents with posterior plagiocephaly. There is controversy over whether prolonged positional changes can lead to physical changes in the lambdoidal sutures, called “functional synostosis.” First, true synostosis of the lambdoidal suture is rare, whereas positional deformity of the skull is becoming increasingly common. Second, children who have lambdoidal synostosis usually have distinctive features, including: 1) a palpable ridge over the suture line, 2) an ipsilateral occipitomastoid bulge, 3) posterior displacement of the ipsilateral ear (in positional deformities, the ipsilateral ear is displaced anteriorly), 4) tilt in the base of the skull when viewed from the back of the child’s
Complications of Craniosynostosis

One of the most serious effects of craniosynostosis is increased intracranial pressure, which generally is not a problem if one suture is involved, but becomes more likely as the number of involved sutures increases. This increased pressure may be acute, leading to signs and symptoms such as headache and vomiting, or they may be more subtle and eventually lead to papilledema and optic atrophy with loss of vision.

Craniosynostosis can have devastating effects on the visual system. If the bony orbits are shallow, proptosis may occur, which in addition to its cosmetic effect, may lead to exposure keratopathy. Asymmetry of the orbits may lead to ptosis or strabismus, both of which can result in amblyopia. Papilledema and optic atrophy, which initially may be asymptomatic, may occur due to increased intracranial pressure. Hypertelorism, the result of coronal synostosis, may affect conjugate vision and cosmesis.

Children who have midfacial hypoplasia that results from craniosynostosis of the sutures of the base of the skull may have problems with the upper airway, leading to stridor and apnea. For example, sleep apnea has been reported in a significant percentage of children who have Apert syndrome. Midfacial hypoplasia may lead to dental problems such as malocclusion. Occasionally, involvement of the lower airway, as with Pierre-Robin sequence, can lead to lower airway obstruction. Some conditions, such as Crouzon syndrome, are associated with abnormalities of hearing. Children who have associated cleft palate may have an increased incidence of ear infections as well. Rarely, children will have difficulty with swallowing if the mandible is involved.

Craniosynostosis severe enough to cause noticeable deformity of the skull and/or face can raise psychosocial concerns. For example, bonding and attachment in infancy may be impaired by the appearance of a child who has severe multiple craniosynostoses. School-age children who have unusual facial appearances often encounter ridicule from peers.

Treatment

NONSURGICAL TREATMENT

Children who have positional deformities without evidence of craniosynostosis often benefit from a trial of physical therapy to maximize range of motion of the neck and changes in sleeping position, such as using a sand bag against the child’s trunk and changing the position of the bed so the child has to turn his or her head the opposite way from the favored position to interact with individuals. If these are unsuccessful, molded plastic helmets can be used to reshape the head. Rarely, surgery may be needed.

SURGERY

The goals of surgical treatment in children who have true craniosynostosis are to: 1) normalize intracranial pressure; 2) allow normal growth of the brain and skull; 3) improve ocular, phonetic, nasal, and dental functioning; and 4) maximize psychological functioning. Current surgical therapy includes resection of the synostosed suture and correction of the skull and upper facial abnormalities that result from the restricted growth and compensatory changes. Older techniques, such as surgical separation at the suture site with interposition of a nonreactive plastic material, has resulted in late residual deformities and are discouraged.

Fronto-orbital osteotomies and craniotomies with cranial vault remodeling are the most common procedures for surgical correction in these patients. This surgery usually is performed by a team consisting of a plastic surgeon, neurosurgeon, and pediatric anesthesiologist. These procedures have become commonplace in many medical institutions and are associated with very low morbidity rates and with hospital stays of 4 to 5 days. Multiple fused sutures or syndromic synostosis require more complex osteotomies (Fig. 7).

During the first year of life, the brain achieves a significant portion of its adult volume and weight (Fig. 8). Therefore, surgery to free sutures and allow normal brain growth to expand the skull in normal directions needs to be performed at this early age. Multiple staged operative procedures are usually necessary with the more serious syndromic craniosynostoses such as Apert syndrome. For example, a child may have initial surgery at 6 months of age, with a second procedure at 4 years of age and a third one at age 13. A number of studies have shown that cranial volume increases.
at a normal rate following this type of surgery, parallel to normal growth curves. Children also develop a significantly improved appearance of the face and skull.

Children who have complex craniosynostosis should be treated by a craniofacial team that includes plastic surgery, neurosurgery, ophthalmology, oral surgery, otolaryngology, and pediatric anesthesia and critical care. The team also should include individuals familiar with the developmental, nutritional, and airway-related aspects of these conditions, such as a pediatrician, as well as someone who can help the family with the psychological issues and provide support and access to resources, including financial counseling.

TABLE 2. Complications of Surgery to Correct Craniosynostosis

- Blood loss
- Subdural hematoma
- Subgaleal hemorrhage
- Cerebrospinal fluid leak
- Meningocele
- Infection
- Intravascular air
- Pressure necrosis of skin
- Retinal damage
- Corneal drying
- Strabismus from damage to trochlea or canthal tendons
- Syndrome of inappropriate antidiuretic secretion
- Panhypopituitarism
- Risks from anesthesia

in the skull. Syndrome of inappropriate antidiuretic hormone secretion and panhypopituitarism also may occur following this surgery.

ANCILLARY EVALUATIONS

Table 3 lists activities crucial to the evaluation and treatment of a child who has severe craniofacial abnormalities, such as Apert or Crouzon syndrome. Because many of these diagnoses now are being made in the prenatal period through the use of routine ultrasonography, facilities for prenatal genetic counseling and anticipatory guidance should be provided. Genetic analysis through amniocentesis or chorionic villi sampling may be indicated. During the neonatal period, the child should be evaluated thoroughly to identify other conditions, with special attention to the areas indicated in the table.

Between 2 and 9 months of age, the child’s skull and face should be evaluated by the craniofacial team. The cervical spine may need to be evaluated, as in children who have Apert syndrome, and may exhibit partial fusion. Referral to an orthodontist or oral surgeon should be made at this time. The primary surgery usually is performed during
TABLE 3. Evaluation and Treatment of Complex Craniosynostosis

<table>
<thead>
<tr>
<th>CHILD'S AGE</th>
<th>FACTORS TO CONSIDER</th>
<th>POSSIBLE CONSULTATIONS</th>
</tr>
</thead>
</table>
| Prenatal | Anticipatory guidance regarding the future
Genetic factors | Genetics |
| Neonatal | Airway—upper airway abnormalities; consider
tracheostomy
Nutrition—consider gastrostomy
Neurologic—rule out increased intracranial pressure;
consider head ultrasonography or computed
tomography, skull surgery, or ventriculoperitoneal
shunt
Ophthalmologic—evaluate vision and extraocular
motion; consider eye lubricants
Auditory—evaluate hearing
Extremities—evaluate for malformations
Psychosocial issues—evaluate bonding and attachment | Otorhinolaryngologist
Dietitian
Neurosurgeon, Plastic surgeon
Ophthalmologist
Audiologist
Orthopedist
Social worker, Psychologist |
| 2 to 6 Months | **Primary Surgery**
Skull and face—evaluate using three-dimensional
computed tomography
Neck—evaluate cervical spine as indicated
Airway—evaluate for stridor and apnea
Ears—watch for acute otitis media; evaluate hearing
Dentition—observe for abnormalities of palate and
midface, occlusion
Development—evaluate milestones
Psychosocial issues—stress and support, financial
issues, grieving | Plastic surgeon, Radiologist
Orthopedist
Otorhinolaryngologist
Audiologist
Orthodontist or Oral surgeon
Early intervention specialists
(eg, physical therapist, occupational therapist)
Psychologist |
| 4 years | **Secondary Surgery**, eg, Le Fort III midface advancement |
| Adolescence | **Additional Surgeries**, eg, jaw surgery, Le Fort advancement,
or maxillomandibular osteotomies or genioplasty
Identify transitions to adulthood | Psychologist, Transitional program |

this period. Children who have genetic or chromosomal abnormalities, as well as those who have primary brain anomalies, should undergo developmental evaluations. Throughout the entire treatment period, psychosocial issues such as stress, support, and grieving should be addressed. A national organization, FACES, the National Association for the Craniofacially Handicapped (PO Box 11082, Chattanooga, TN 37401; (800) 332-2373) provides support to parents of children who have severe involvement. For children who have simple isolated synostosis, further interventions usually are not necessary, but additional surgery may be necessary for those who have midface hypoplasia or more complex abnormalities, even through adolescence.

Conclusion

Asymmetry of the infantile head is a common occurrence. Because the optimal period for surgical correction of craniosynostosis is in the first year of life, pediatricians need to be able to differentiate positional deformations from premature closure of sutures as early in the child’s life as possible. If craniosynostosis is diagnosed, its etiology should be ascertained and referral to an appropriate team made expeditiously.

Ongoing surveillance of the child who has craniosynostosis for issues related to genetic counseling, cognitive development, airway management, and nutrition, as well as psychological issues such as attachment and interaction with peers should be provided by the pediatrician. The primary care pediatrician should assist the surgical team in the pre- and postoperative periods. The pediatrician can improve the child’s care and outcomes by knowledgeable coordination of care.

SUGGESTED READING

